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a b s t r a c t 

Deep neural networks currently provide the most advanced and accurate machine learning models to distinguish 

between structural MRI scans of subjects with Alzheimer’s disease and healthy controls. Unfortunately, the subtle 

brain alterations captured by these models are difficult to interpret because of the complexity of these multi-layer 

and non-linear models. Several heatmap methods have been proposed to address this issue and analyze the imag- 

ing patterns extracted from the deep neural networks, but no quantitative comparison between these methods 

has been carried out so far. In this work, we explore these questions by deriving heatmaps from Convolutional 

Neural Networks (CNN) trained using T1 MRI scans of the ADNI data set and by comparing these heatmaps 

with brain maps corresponding to Support Vector Machine (SVM) activation patterns. Three prominent heatmap 

methods are studied: Layer-wise Relevance Propagation (LRP), Integrated Gradients (IG), and Guided Grad-CAM 

(GGC). Contrary to prior studies where the quality of heatmaps was visually or qualitatively assessed, we ob- 

tained precise quantitative measures by computing overlap with a ground-truth map from a large meta-analysis 

that combined 77 voxel-based morphometry (VBM) studies independently from ADNI. Our results indicate that 

all three heatmap methods were able to capture brain regions covering the meta-analysis map and achieved bet- 

ter results than SVM activation patterns. Among them, IG produced the heatmaps with the best overlap with the 

independent meta-analysis. 
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. Introduction 

Alzheimer’s disease (AD) is the most common brain dementia

 Schneider et al., 2009 ). In 2020, 5.8 million Americans age 65 and

lder were living with AD, and this number is expected to reach 13.8

illion by 2050 ( AD, 2020 ). Considerable efforts have been made to

ackle the challenges raised by this issue and, in particular, research

arly neuroimaging biomarkers and prognosis tools ( Habes et al., 2016a;

016b; Li et al., 2019; Rathore et al., 2017 ). The most recent Deep Learn-

ng frameworks were involved in these efforts and showed promising

chievements in AD classification ( Ebrahimighahnavieh et al., 2020 ). 

Unfortunately, these machine learning frameworks rely on complex

rchitectures, which make it difficult to understand what neurological

hanges are modeled by the deep networks as typical dementia signa-
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ures, markers of disease progression, and clues for differential diagnosis

etween dementia ( Levakov et al., 2020; Montavon et al., 2018 ). 

In recent years, a new field of research dedicated to the explanation

f deep learning models has emerged: Explainable Artificial Intelligence

XAI) ( Barredo Arrieta et al., 2020; Longo et al., 2020; Miller, 2019 ). In

hat field, heatmaps have emerged as a popular visualization tool to in-

erpret Deep Learning models working on images. A heatmap indicates

hat part of an input image contributes the most to a deep network out-

ut ( Simonyan et al., 2014; Zhang and Zhu, 2018; Zhou et al., 2016 ).

n other words, a heatmap reflects the importance of imaging features

xtracted from an image by a deep neural network to support its deci-

ion and how much local image patterns contribute to these important

eatures. The first heatmaps introduced in the literature, the saliency

aps , were produced by back-propagating the gradients of a network
 Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, 

ry 2023 
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Table 1 

ADNI participants selected in this work. Fisher’s exact test detected 

no significant difference in the proportion of men in the two groups 

( 𝑝 = 0 . 25 ) and no significant difference in the proportion of scans ac- 

quired with a 3 Tesla MRI scanner ( 𝑝 = 0 . 22 ). The T -test detected no 

significant mean age difference ( 𝑝 = 0 . 41 ), while mini-mental state ex- 

amination (MMSE) values ( Jack et al., 2008 ) were significantly worse 

in the AD group. Education information was only available for 220 AD 

study participants and 211 controls and indicated significantly longer 

education in the AD group. 

Controls AD p -value 

Study participants ( n ) 252 250 

MRI B0 field (1.5T/3T) 92/160 78/172 0.22 

Sex (M/F) 131/121 143/107 0.25 

Mean age (std) 74.41 (6.00) 74.93 (8.01) 0.41 

Mean MMSE (std) 29.06 (1.25) 22.95 (2.23) < 0.001 

Mean years of education (std) 15.25 (2.95) 16.35 (2.65) < 0.001 
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utput through all the layers of the model until reaching the input layers

 Simonyan et al., 2014 ). This core idea was improved and generalized

everal times in the following years, such as in the Guided Backpropa-

ation method that builds on the Deconvolution network ( Zeiler et al.,

010 ) and where only positive gradients are propagated through ReLU

etwork layers ( Nair and Hinton, 2010; Springenberg et al., 2015 ). In

he Class Activation Maps (CAM), network activations are considered in-

tead of back-propagated gradients ( Zhou et al., 2016 ). The Integrated

radient (IG) approach consists of averaging gradient maps generated

rom multiple scaled inputs ( Sundararajan et al., 2017 ). In the Layer-

ise Relevance Propagation (LRP) method, a set of preservation rules

re applied when back-propagating a network’s activations and, in par-

icular, treating positive and negative neural network activations in dif-

erent ways ( Bach et al., 2015; Binder et al., 2016; Montavon et al.,

017 ). These strategies are also implemented in the DeepLift method

 Shrikumar et al., 2017 ), where baseline activations are subtracted from

euron activations during propagation. These baseline activations are

enerated by passing task-specific reference images to the networks

 Shrikumar et al., 2017 ). The most recent approaches combine mul-

iple methods to generate fine visualizations that can be produced at

ifferent network depths, such as the Guided Grad CAM method that

ombines guided back-propagated gradients with class-activation maps

enerated from output gradients ( Selvaraju et al., 2017; Springenberg

t al., 2015; Zhou et al., 2016 ). Heatmaps methods can be selected based

n their implementation invariance ( Sundararajan et al., 2017 ), their

obustness for input perturbations ( Samek et al., 2016 ), model weight

andomization ( Adebayo et al., 2018 ), and the relevant information they

apture in the saliency maps they produce ( Dabkowski and Gal, 2017 ).

n the studies where no ground truth is available to estimate the qual-

ty of the heatmaps, this evaluation is particularly difficult to conduct

 Böhle et al., 2019 ). 

In the neuroimaging field, clinical studies have been conducted for

ecades to establish how brain dementia affects the brain ( Ashburner

nd Friston, 2000; 2001 ). A considerable number of voxel-based mor-

hometry studies (VBM) have been conducted to discover which brain

trophies observed in the aging brain can be imputed to an underlying

lzheimer’s disease ( Busatto et al., 2008; Chételat et al., 2008; Mueller

t al., 2010a; Testa et al., 2004; Villain et al., 2008 ). When a meta-

nalysis is conducted, these VBM studies are often summarized into

 single brain map indicating what brain regions are affected by the

isease ( Di et al., 2014; Minkova et al., 2017; Schroeter et al., 2009 ).

BM studies capture the univariate significance of local tissue changes:

hey indicate how much a brain disorder such as AD has impacted local

rain tissues. This ‘decoding’ approach reverses the ‘encoding’ approach

dopted by neural networks, where local tissue changes are aggregated

nto non-linear features used to predict patient diagnosis. However, un-

er the assumptions that AD only affects localized brain regions ( Busatto

t al., 2008; Chételat et al., 2008; Mueller et al., 2010a; Testa et al.,

004; Villain et al., 2008 ) and that neural networks focus on a restricted

et of relevant brain regions when diagnosing AD, VBM and heatmaps

hould overlap to highlight brain regions associated with and predictive

f the disease. Since the different heatmap methods capture imaging

attern contributions in various ways, the overlap between heatmaps

nd Alzheimer’s disease VBM patterns is also expected to depend on the

eatmap calculation; some methods focusing on high-level features are

ore difficult to relate to voxel-wise VBM results. Lastly, it is unclear

ow well heatmaps derived from a restricted data set would replicate

n larger AD neuroimaging cohorts and if that overlap between univari-

te significance and neural network features’ importance would be pre-

erved. 

As far as we know, none of these questions have been explored

o far. We propose to address them at the same time, in this work,

y quantifying the amount of overlap that can be reached between a

ground truth ” univariate significance map provided by a large VBM

eta-analysis and heatmaps derived by the most advanced methods

rom a convolutional neural network achieving state-of-the-art classi-
2 
cation performance for Alzheimer’s disease classification on an inde-

endent sample of MRI scans. More specifically, we evaluate the ability

f three prominent heatmap methods, the Layer-wise Relevance Propa-

ation (LRP) method ( Bach et al., 2015 ), the Integrated Gradients (IG)

ethod ( Sundararajan et al., 2017 ), and the Guided grad-CAM (GGC)

 Selvaraju et al., 2017 ) method, to capture Alzheimer’s disease effects

y training 3D CNN classifiers using T1-weighted MRI scans part of the

DNI data set, and measuring the overlap between their heatmaps and

 binary brain map derived from a meta-analysis of voxel-based mor-

hometry studies conducted on other T1 MRI scans. Figure 1 summa-

izes our approach. 

. Materials and methods 

.1. ADNI study participants 

A total of 502 ADNI participants were included in this study. 250

articipants were diagnosed with AD and 252 controls. 170 participants

ere part of the ADNI1 study (92 controls, 78 AD), 298 were enrolled

n the ADNI2 study (160 controls, 138 AD), and the last 34 participants

ere recruited for ADNI3 (0 controls, 34 AD). Study participant demo-

raphics are reported in Table 1 . 

.2. ADNI data and processing 

For each participant, a raw structural T1-weighted MRI scan was

ownloaded from the Alzheimer’s Disease Neuroimaging Initiative

ADNI) database (adni.loni.usc.edu). As a preparation for the present

tudy, the scans were further processed as follows. 

First, the multi-atlas brain segmentation pipeline (MUSE) was used

or skull-stripping the T1-weighted MRI scans and generating a gray

atter map ( Doshi et al., 2016 ). This automated processing pipeline

tarts by denoising the T1 scans using the N4 bias field correction

 Tustison et al., 2010 ) provided as part of the Advanced Normaliza-

ion Tools software library (ANTs, version 2.2.0) ( Avants et al., 2011 ).

hen, the denoised scans are registered using ANTS nonrigid SyN reg-

stration ( Avants et al., 2008; 2011 ) and DRAMMS ( Yangming and Da-

atzikos, 2009 ) to a set of 50 brain atlases where brain masks have

een manually segmented. These registrations are used to warp the at-

as brain masks into the space of the T1 scan to process, where they

re combined by majority voting to produce an accurate brain mask

 Doshi et al., 2016 ). The brain is then segmented into white matter,

ray matter, and cerebrospinal fluid using FSL FAST (version 5.0.11)

 Jenkinson et al., 2012 ), and parcellated into regions of interest by

egistering a set of 50 manually segmented brain atlases ( Doshi et al.,

016 ). Then, the skull-stripped T1 scans produced by MUSE were reg-

stered to the 1 mm resolution 2009c version of the ICBM152 MNI at-

as ( Collins et al., 1999; Fonov et al., 2011; 2009 ) using the non-rigid
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Fig. 1. An overview of the present study. (1) A VBM meta-analysis was conducted to derive an Activation Likelihood Estimation (ALE) map summarizing AD effects 

on the brain visible in T1-weighted MRI scans. (2) 3D CNNs were trained to classify AD and CN ADNI T1-weighted MRI scans. (3) Three heatmap methods were 

applied to the CNN models with the highest cross-validation accuracy. (4) The heatmaps were compared with the meta-analysis map. 
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egistration method SyN part of the ANTs library (ANTs version 2.3.4)

 Avants et al., 2008; 2011 ). Lastly, each T1 scan was normalized individ-

ally by dividing the T1 intensities by the maximum intensity within the

rain. 

.3. Convolutional neural networks 

A convolutional neural network (CNN) consists of a set of convo-

utional layers applying convolution operators to gradually condense

nput data into a set of high-level features that are passed through

ully connected layers to produce the final output of the network

 Krizhevsky et al., 2017 ). This output is usually a single value scaled

etween 0 and 1 when the CNN is used for binary classification

 Krizhevsky et al., 2017 ). Convolutional layers are often combined with

he ReLU activation layer filtering negative outputs ( Nair and Hin-

on, 2010 ), max-pooling layers reducing the dimension of the data

 Krizhevsky et al., 2017 ), and batch normalization layers helping the

eural network model optimization ( Ioffe and Szegedy, 2015 ). 

In this work, five different 3D CNN architectures of varying complex-

ty were compared. The first architecture, which will be referred to as

odelA, was made of five convolutional layers with decreasing kernel

izes: one layer with a kernel size of 7 × 7 × 7 × 𝑐, two layers with kernel

izes of 5 × 5 × 5 × 𝑐, and two layers with kernel sizes of 3 × 3 × 3 × 𝑐,

here 𝑐 denotes the number of channels, and it was fixed for each CNN

eparately. ModelB had five convolutional layers with the same kernel

ize of 3 × 3 × 3 × 𝑐. ModelC had four convolutional layers with the same

ernel size of 5 × 5 × 5 × 𝑐. ModelD was made of three convolutional lay-

rs with the same kernel size of 7 × 7 × 7 × 𝑐. All convolutional layers

ere followed by a batch normalization layer, a ReLU activation layer

 Nair and Hinton, 2010 ), and a max-pooling layer ( Krizhevsky et al.,

017 ). For each architecture, the number of channels varied from 24 to

2 to build networks of increasing numbers of parameters. On top of

hese convolutional layers, all the CNNs were completed by two fully

onnected layers separated by a ReLU layer ( Nair and Hinton, 2010 )

nd a dropout layer fixed to 0.5 to prevent overfitting ( Srivastava et al.,

014 ). The first fully connected layer was obtained by flattening the fea-

ures produced by the last convolutional layer. The second layer was set

o contain 64 neurons and to produce a continuous output corresponding

o the AD diagnosis. ModelE is adapted from residual network architec-
3 
ures ( He et al., 2016 ). Residual networks (ResNets) are the first neural

etworks consisting of hundreds of layers and have achieved huge suc-

ess in image recognition. The key component of a ResNet is the resid-

al block which concatenates one layer to the next. We tested ModelE

f increasing numbers of layers (from 4 to 28) with varying numbers of

hannels (from 4 to 32). All five CNN architectures are summarized in

ig. 2 . 

These networks were trained to distinguish between the MRI scans of

D and control in our ADNI data set. Cross-entropy was used as a loss

unction for the classification, and that loss was minimized using the

dam optimizer with a learning rate of 0.0001 and a weight decay of

.0001 ( Kingma and Ba, 2015 ). CNN accuracy was evaluated via 5-fold

ross-validation by splitting the data set five times into a training set of

22 scans, a validation set of 80 scans, a test set of 100 scans for the first

our folds, and a training set of 322 scans, a validation set of 78 scans,

 test set of 102 scans for the last fold. An early stopping criterion was

mplemented by monitoring the validation loss and forcing the training

rocess to stop after ten epochs producing no improvements in the vali-

ation loss. These CNN architectures and their optimizers were selected

o match standard architectures and their default optimization parame-

er values and, in particular, state-of-the-art Alexnet ( Krizhevsky et al.,

017 ) and Google net ( Szegedy et al., 2015 ). 

All the models were trained on a high-performance computing sys-

em equipped with Nvidia v100 GPUs. The training required 32 GB of

AM and was completed within 3 h to 8 h for each fold, depending on

he model complexity. The proposed network was built with Pytorch

 Paszke et al., 2019 ). 

The classification accuracy obtained for all the CNNs tested was com-

ared with the classification accuracy of linear SVMs with the following

et of SVM-C parameters ( Pedregosa et al., 2011; Smola and Schölkopf,

004 ): 10 −6 , 10 −5 , 10 −4 , 10 −3 , 10 −2 , 10 −1 , 1, 10, 10 2 , 10 3 , 10 4 . An SVM

ctivation patterns map was then calculated for the SVM model with

he best accuracy ( Haufe et al., 2014 ). SVM activation patterns maps

orrespond to SVM coefficients weighted by the covariance of the data,

nd they were shown to better capture brain changes than unweighted

VM coefficient maps ( Haufe et al., 2014 ). The CNN model with the

est cross-validated accuracy was then retained to compute heatmaps

ighlighting the brain regions selected by the model to distinguish AD

nd control brains. 
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Fig. 2. CNN models used in this study to classify ADNI AD participants and controls. For each architecture, several numbers of channels c were tested. The number 

of channels c corresponds to the number of 3D convolutional kernels used in each convolutional layer. Increasing numbers of layers were tested for ModelE. The 

Residual Block used in ModelE concatenates its input with the output of two 3 × 3 × 3 × 𝑐 convolutional layers. 
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.4. CNN heatmap methods 

In this study, three prominent CNN heatmap methods are selected,

he Layer-wise Relevance Propagation (LRP) method ( Bach et al., 2015 ),

he Integrated Gradients (IG) method ( Sundararajan et al., 2017 ), and

he Guided Grad-CAM (GGC) ( Selvaraju et al., 2017 ) method. These

ethods were used to produce a heatmap for each test scan and then av-

raged to produce a single heatmap for each heatmap method indicating

hat brain regions were used the most by the selected CNN when clas-

ifying the brain scans to distinguish AD and control ADNI participants

 Bach et al., 2015; Selvaraju et al., 2017; Sundararajan et al., 2017 ). 

The Layer-wise Relevance Propagation (LRP) method produces a

eatmap by estimating a relevance score for each input pixel passed

o a CNN model. The relevance score is computed by propagating CNN

utputs backward in the network according to a specific set of rules

 Bach et al., 2015 ). These rules are designed to preserve relevance scores

rom layer to layer. They are often modified to reduce the noise in rele-

ance scores, improve their sparsity, or treat positive and negative neu-

al network activations differently ( Bach et al., 2015; Binder et al., 2016;

ontavon et al., 2017 ). In this work, we used the 𝛽-rule LRP algorithm

mplemented by Binder et al. (2016) ; Böhle et al. (2019) . The 𝛽 parame-

er aiming at balancing the relevance scores associated with positive and
4 
egative neural network activations was set to 0.5 to account for both

ctivations in a similar manner ( Bach et al., 2015 ). Since the standard

RP implementation cannot handle the 3D adaptive average pooling lay-

rs in the residual blocks of our ModelE architecture, only GGC and IG

ould be used to derive heatmaps for these deep networks ( LRP, 2023 ).

The Integrated Gradients (IG) method was introduced to guarantee

wo desirable heatmap properties: sensitivity and implementation in-

ariance ( Sundararajan et al., 2017 ). Sensitivity refers to the ability of

 heatmap method to produce null relevance scores for network inputs

hat are not contributing to the network output. Most of the methods

ublished before IG either did not satisfy the sensitivity requirement,

uch as Guided Backpropagation ( Springenberg et al., 2015 ), Deconvo-

ution networks ( Zeiler et al., 2010 ), and DeepLift ( Shrikumar et al.,

017 ), or were not invariant to the neural network implementation,

uch as LRP ( Bach et al., 2015 ), and DeepLift ( Shrikumar et al., 2017 ).

he Integrated Gradients (IG) method produces the heatmap of an in-

ut image by multiplying the input with a scaling factor uniformly se-

ected between 0 and 1 several times in a row, computing the gra-

ient for each scaled input via backpropagation, and then averaging

hese gradients ( Sundararajan et al., 2017 ). The IG implementation used

n this work will be available on https://github.com/UTHSCSA-NAL/

NN-heatmap/ . 

https://github.com/UTHSCSA-NAL/CNN-heatmap
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Guided Grad-Cam (GGC) combines Grad-CAM and Guided Backprop-

gation ( Selvaraju et al., 2017; Springenberg et al., 2015 ). Grad-CAM is

 generalization of the Class Activation Mapping (CAM) ( Zhou et al.,

016 ) that can be implemented for any CNN without model changes or

e-training. Grad-CAM generates a heatmap for a CNN layer by apply-

ng a ReLU function ( Nair and Hinton, 2010 ) to a linear combination

etween the activations obtained at that layer and the backpropagated

radients from subsequent layers ( Selvaraju et al., 2017 ). In Guided

rad-CAM, these Grad-CAM heatmaps are up-sampled to the resolution

f the input data and element-wise multiplied with a heatmap gener-

ted by Guided Backpropagation to produce heatmaps with the same

esolution as the input data ( Selvaraju et al., 2017; Springenberg et al.,

015 ). During our experiments, we only considered Guided Grad-CAM

eatmaps based on the Grad-CAM maps computed for the last convolu-

ional layer of our CNNs, as suggested in the original GGC publication

 Selvaraju et al., 2017 ). GGC was implemented as part of the Captum

yTorch library https://captum.ai/ . 

.5. Meta-analysis ALE map 

The meta-analysis map was produced by reprocessing a set of voxel-

ased morphometry (VBM) studies collected from a prior meta-analysis

 Ashburner and Friston, 2000 ). We produced a brain map by apply-

ng the activation likelihood estimation (ALE) method ( Eickhoff et al.,

012; 2016; Turkeltaub et al., 2002; 2012 ) implemented in the Gin-

erALE software (version 3.0.2) ( Eickhoff et al., 2009; GingerAle, 2022 )

o combine the selected VBM studies into a single ALE map indicat-

ng what atrophies observed in the brain were likely to be associated

ith Alzheimer’s disease ( Turkeltaub et al., 2002 ). More specifically

nd following ( Müller et al., 2018; 2017 ), GingerALE was running for

 cluster-forming p -value of 0.001 and a cluster-level significance level

f 0.05. Cluster significance was estimated by conducting a thousand

andom permutations. The continuous map generated by GingerALE,

here all non-significant brain locations had been assigned null values,

as thresholded at its smallest non-zero value to produce a binary map

uitable for a comparison with the thresholded CNN heatmaps. 

.6. Evaluation metrics 

The ability of the CNN heatmap methods presented in the previous

ection to capture brain alterations associated with Alzheimer’s disease

as estimated by measuring the Dice overlap between binary maps ob-

ained by smoothing and thresholding the heatmaps with the binary

rain map derived from a large meta-analysis that summarized the brain

egions affected by Alzheimer’s disease in T1 MRI scans. 

More specifically, CNN heatmap values were replaced by their ab-

olute values. The heatmaps were then smoothed by sixteen different

aussian kernels of full width at half maximum (FWHM) ranging from

 mm to 32 mm (1 mm, 2 mm, 3 mm, 4 mm, 5 mm, 6 mm, 7 mm,

 mm, 9 mm, 10 mm, 12 mm, 16 mm, 20 mm, 24 mm, 28 mm, 32 mm).

or each smoothed heatmap and the original heatmaps, 50 values were

venly selected between the minimum and the maximum heatmap value

o threshold the heatmaps. The reason to smooth a heatmap is to make

t comparable to a meta-analysis map since the ALE algorithm inher-

ntly adds Gaussian smoothing to the locations of reported foci. The

50 binary maps obtained in this way were compared with the meta-

nalysis map by computing a Dice overlap. This approach was chosen to

xplore and mitigate spatial resolution discrepancies between the CNN

eatmaps and the meta-analysis map. 

.7. Additional synthetic validation 

The methods presented in this work were validated by processing

wo synthetic data sets. The first data set, the “single-subject ” data set,

ade of 10,000 images, was generated from a single healthy control sub-

ect MRI scan (mean MRI intensity = 2600, std = 756) from our ADNI
5 
ata set and was downsampled to a size of 65 × 77 × 65 voxels to reduce

he computational burden. In half of the images, the MRI intensity in

he hippocampus regions was increased by a random value ranging be-

ween 0 and 2500 and simulating a disease effect on grey matter tissue.

hen, Gaussian noise (mean = 0, std = 2000) was added to all synthetic

mages, and a Gaussian smoothing of 4 mm FWHM was applied. The sec-

nd data set, the “whole-cohort ” data set, also made of 10,000 images,

as generated using 250 healthy controls from our ADNI data set and

ownsampled to 65 × 77 × 65 voxels. Each healthy control scan was used

o generate 40 images. In half of these images, the MRI intensity in the

ippocampus regions was increased by a random disease effect between

 and 2500. Then, Gaussian noise (mean = 0, std = 2000) was added

o all synthetic images, and a Gaussian smoothing of 4 mm FWHM was

pplied. 

Eleven linear SVMs were trained to distinguish the synthetic scans

ith and without disease effect, for the parameters tested with the clin-

cal data (SVM-C parameter in 10 −6 , 10 −5 , 10 −4 , 10 −3 , 10 −2 , 10 −1 , 1, 10,

0 2 , 10 3 , 10 4 ) ( Pedregosa et al., 2011; Smola and Schölkopf, 2004 ). Then,

NN models similar to the models shown in Fig. 2 were trained: a Mod-

lA containing one 7 × 7 × 7 × 𝑐 and one 5 × 5 × 5 × 𝑐 convolutional lay-

rs, where the number of channels 𝑐 was set to 4 (ModelA4l2), a ModelB

ontaining two 3 × 3 × 3 × 𝑐 convolutional layers (ModelB4l2), a Mod-

lC containing two 5 × 5 × 5 × 𝑐 convolutional layers (ModelC4l2), and a

odelD containing two 7 × 7 × 7 × 𝑐 convolutional layers (ModelD4l2).

he number of convolutional layers in these CNNs was reduced, com-

ared to the original CNN architectures used for classifying ADNI scans,

o fit the size of the downsampled synthetic images. More specifically,

ax-pooling layers have the effect of largely reducing the spatial size of

he data, and two layers would have reduced our synthetic data to a size

hat is smaller than the kernel size, which would be insufficient to reach

nother convolutional layer. Since the residual block in ModelE does not

uip with the max-pooling layer, the layer of ModelE need not be modi-

ed for synthetic data. They were trained for a cross-entropy classifica-

ion loss that was minimized using the Adam optimizer with a learning

ate of 0.0001 and a weight decay of 0.0001 ( Kingma and Ba, 2015 ) for

 hundred epochs. Please refer to Fig. 2 for their detailed architecture.

or each data set, LRP, IG, and GGC were used to compute a heatmap

or the CNN model reaching the best five-fold cross-validated accuracy.

he activation patterns of the best SVM and the heatmap values were

hen compared with the binary map of the hippocampus by computing

ice overlaps at different spatial smoothing levels, as explained in the

revious Sections. 

. Results 

.1. Classification performance in synthetic data 

For both synthetic data sets, the ModelD4l2 reached the best five-

old cross-validated accuracy, with 91% accuracy for the single-subject

ata and 90.1% for the whole-cohort data, and systematically outper-

ormed the best SVM models, that were obtained for both data sets by

etting SVM-C parameter to 0.1 (87% accuracy for single-subject data

et and 87.5% accuracy for whole-cohort data set). More specifically,

or the single-subject data set, ModelA4l2 also outperformed the best

VM, with an accuracy of 90%, but ModelC4l2 and ModelB4l2 pro-

uced worse classification results, with respectively 81% and 74% ac-

uracy. For the whole-cohort data set, on the contrary, ModelB4l2 was

he second-best model with 90.06% accuracy, followed by ModelA4l2

89.9%) and ModelC4l2 (87.9%) and all CNN models were more accu-

ate than the best SVM tested. We tested ModelE with 4, 6, 8, 10, and 18

ayers and 4, 8, 10, 12, 16, 20, 24, 28, and 32 channels. For the single-

ubject data set, the best five-fold cross-validated accuracy was 89.83%

nd achieved by the 8 layers ModelE with 12 channels (ModelE8-12).

or the whole-cohort data set, the best five-fold cross-validated accuracy

as 89.91% and was achieved by the 8 layers ModelE with 28 channels

ModelE8-28). 

https://captum.ai/
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Fig. 3. Dice curves reaching the best overlap between the brain region altered in the synthetic data for heatmaps and SVM activation patterns; (A) for the single 

subject data set, and (B) for the whole cohort data set. ModelD4l2 achieved the best accuracy for both datasets. ModelE8-12 achieved the best accuracy among the 

residual networks for single subject data and ModelE8-28 for whole cohort data. Only the best SVM model is shown. s0 indicates a heatmap that was unsmoothed, 

s1 indicates a heatmap smoothed by a Gaussian kernel of 1 mm FWHM, and s2 indicates a 2 mm FWHM smoothing. 
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Table 2 

The meta-analysis ALE map summarizes 77 VBM studies published in 58 ar- 

ticles. Gender information was missing in 3 MRI VBM studies. A Fisher exact 

test was conducted to compare men/women counts, and an unpaired T -test 

was conducted to compare group mean ages. After Bonferroni correction for 

two tests, none of the differences observed was significant at level 𝑝 = 0 . 05 . 

n Men/women Mean age 

CN 2118 853/1127 69.9 

AD/MCI 1699 725/882 71.6 

p -value 0.224 0.03 

Table 3 

5-fold cross-validation accuracy for the classification of ADNI participants, 

for ModelA ModelB ModelC and ModelD with all numbers of channels 𝑐, and 

the best Linear SVM. The number of channels corresponds to the number of 

3D convolutional kernels used in each CNN convolutional layer. 

𝑐 ModelA ModelB ModelC ModelD 

24 76 . 41% 82 . 65% 75 . 47% 58 . 59% 
28 83 . 85% 84 . 45% 65 . 59% 54 . 78% 
32 78 . 86% 85 . 44% 84 . 45% 58 . 20% 
36 83 . 84% 86 . 05% 72 . 18% 55 . 80% 
40 78 . 05% 86 . 25% 58 . 18% 47 . 21% 
44 61 . 80% 𝟖𝟕 . 𝟐𝟓 % 55 . 65% 52 . 99% 
48 59 . 81% 86 . 45% 64 . 45% 55 . 48% 
52 61 . 41% 86 . 46% 62 . 64% 47 . 81% 

Best SVM-C parameter 0.001, accuracy 81 . 19% . 
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.2. Heatmaps derived from synthetic data 

The Dice overlaps between heatmaps and the binary hippocampus

ap are shown in Fig. 3 . All smoothing results are reported in Supple-

entary materials (Section 1). For the single-subject data set, the best

ice overlap measured for LRP, IG, GGC using ModelD4l2 is 0.581 when

he LRP heatmap was smoothed by a 1 mm FWHM Gaussian smooth-

ng, 0.703 for the IG heatmap with a 1 mm smoothing, 0.593 for GGC

eatmap with a 1 mm smoothing. The best Dice overlap measured for

G, GGC using ModelE8-12 is 0.433 when IG heatmap was smoothed

t 4 mm and 0.202 when GGC heatmap was smoothed at 12 mm.

he best dice overlap for SVM activation patterns is 0.749 without

moothing. 

For the whole-cohort data set, the best Dice overlap measured for

RP, IG, GGC, using ModelD4l2 is 0.766 for the LRP heatmap with-

ut Gaussian smoothing, 0.804 for the IG heatmap without smoothing,

.763 for GGC without smoothing. The best dice overlap measured for

G, GGC using ModelE8-28 is 0.602 when IG heatmap was smoothed by

 mm smoothing and 0.748 when GGC heatmap was smoothed by 1 mm

moothing. The best dice overlap for SVM activation patterns is 0.748

ithout smoothing. 

Their corresponding heatmaps achieved the best overlap with the

ippocampus map and the heatmaps thresholded at 5% of their maxi-

um values are shown in Supplementary materials (Section 1). Those

lots indicate that IG heatmaps have a better focus on the hippocampus

han GGC and LRP heatmaps. 

These results demonstrate the ability of CNN heatmaps to capture

ocalized and specific brain alterations on a synthetic data set and, in

articular, when the hippocampus is affected similarly as in real clinical

ata. 

.3. Classification performance in ADNI 

The 5-fold cross-validation accuracy of ModelA, ModelB, ModelC,

odelD and SVM models tested during this work is reported in Table 3 .

he best CNN accuracy was achieved by ModelB with 44 channels (Mod-

lB44) and reached 87.25%. This accuracy is six percent better than

he cross-validated accuracy obtained with the best SVM model(SVM-

 parameter 0.001), which is close to 81.2% and that was obtained

hrough grid search for a set of SVM-C parameters: 10 −6 , 10 −5 , 10 −4 ,
0 −3 , 10 −2 , 10 −1 , 1, 10, 10 2 , 10 3 , 10 4 . The 5-fold cross-validation accu-

acy of all the ModelE tested is reported in Table 4 . For ModelE, we

btained the best accuracy at 81.08% with 18 layers and 20 channels

ModelE18-20). 
6 
.4. Meta-analysis ALE maps 

The demographics of the participants included in the meta-analysis

re reported in Table 2 . There was no statistically significant differ-

nce between the control group and the AD/MCI group for mean age

nd men/women proportions (at a significance level of 0.05 after Bon-

erroni correction; a Fisher exact test was conducted to compare gen-

er proportions and an unpaired T -test to compare group mean ages).

igure 4 presents the ALE map used in this work. The structural MRI ALE

ap summarizes 77 neuroimaging studies reporting 773 locations in the

rain affected by Alzheimer’s disease, discovered by analyzing the neu-

oimaging data of a total of 3817 study participants around the world

2118 controls, 1699 MCI or AD). The complete list of publications com-

ined in this map is reported in Supplementary materials (Section 2). 
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Table 4 

5-fold cross-validation accuracy for the classification of ADNI participants, for all ModelE and all numbers 

of channels 𝑐. The number of channels corresponds to the number of 3D convolutional kernels used in each 

layer. ModelE28 refers to ModelE with 28 layers. 

𝑐 ModelE28 ModelE24 ModelE22 ModelE20 ModelE18 ModelE16 ModelE10 ModelE8 

8 61 . 12% 70 . 09% 66 . 91% 58 . 12% 67 . 91% 64 . 53% 65 . 17% 49 . 40% 
10 58 . 53% 73 . 90% 72 . 67% 65 . 31% 73 . 08% 62 . 80% 67 . 11% 56 . 41% 
12 68 . 33% 60 . 37% 60 . 02% 78 . 08% 51 . 22% 72 . 51% 63 . 86% 53 . 41% 
14 60 . 27% 71 . 09% 62 . 29% 62 . 74% 67 . 90% 59 . 41% 61 . 01% 59 . 56% 
16 66 . 47% 72 . 61% 56 . 38% 65 . 47% 72 . 29% 75 . 87% 72 . 87% 54 . 35% 
20 54 . 09% 61 . 21% 69 . 69% 62 . 79% 𝟖𝟏 . 𝟎𝟖 % 75 . 09% 63 . 01% 54 . 38% 
24 56 . 58% 69 . 46% 58 . 81% 64 . 16% 66 . 00% 71 . 09% 62 . 89% 57 . 56% 
28 60 . 98% 68 . 86% 60 . 61% 66 . 30% 67 . 41% 66 . 60% 62 . 07% 56 . 01% 

Fig. 4. Meta-analysis ALE maps in the MNI152 template space. 

Fig. 5. For each heatmap method, the Dice curve of ADNI data corresponding to 

the spatial smoothing reaches the best overlap with the meta-analysis. ModelB44 

achieved the best accuracy and ModelE18-20 achieved the best accuracy among 

residual networks. Linear SVM with SVM-C parameter of 0.001 achieved the 

best accuracy among tested SVMs. LRP-s7 corresponds to the LRP heatmap after 

7 mm FWHM Gaussian smoothing, and similarly for other methods. 
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.5. Overlaps between heatmaps and meta-analysis 

The five ModelB44 models trained during the 5-fold cross-validation

ere used to generate heatmaps. For each model, a heatmap was gen-

rated for each test scan and each heatmap method: LRP, IG, and GGC.

he 502 individual heatmaps obtained for each method were averaged

nto a single heatmap that was compared with the binary meta-analysis

ap to evaluate the performance of the method. In addition, an SVM

ctivation patterns map was produced by training a linear C-SVM using

ll the data and by retaining the weight of this model to create a brain

ap. The C parameter of this SVM was set to the value producing the

est five-fold cross-validated accuracy ( 𝐶 = 0 . 001 ). 
Figure 5 reports all the Dice measured between the heatmaps and

he meta-analysis map. The best Dice overlap measured for LRP, IG, and

GC, using ModelB44 was 0.502 when the LRP heatmap was smoothed

y a 7 mm FWHM Gaussian smoothing, 0.550 for the IG heatmap with

 4 mm smoothing, 0.540 for GGC with an 8 mm smoothing. The best
7 
ice overlap measured for IG, and GGC, using ModelE18-20 was 0.152

or the IG heatmap with a 26 mm smoothing and 0.338 for the GGC

eatmap with a 32 mm smoothing. SVM activation patterns achieved

 dice of 0.363 with a 12 mm smoothing. The heatmaps with the best

verlaps with the meta-analysis are shown in Fig. 6 . Figure 7 displays

he unsmoothed heatmaps. The LRP heatmaps select more regions than

he other maps and appear to be noisier. On the other hand, IG heatmaps

ave a better focus on the regions highlighted by the meta-analysis, but

he unsmoothed IG map presents an unrealistic scatter. IG produced a

ap that was simultaneously more relevant than the LRP heatmap and

ess scattered than the GGC heatmap. In comparison, the unsmoothed

VM activation patterns map covers most of the grey matter. The linear

VM produced slightly larger weight amplitudes in the regions relevant

or the diagnosis, but an aggressive smoothing was required to make

his effect emerge in Fig. 6 . 

. Discussion 

In the present study, we reported the first data-driven validation,

or the study of Alzheimer’s disease, of three prominent CNN heatmap

ethods: Layer-wise Relevance Propagation (LRP), Integrated Gradients

IG), and Guided Grad-CAM (GGC). The heatmaps produced by these

ethods, for a CNN classifier producing the best AD classification among

 large set of CNN architectures tested using ADNI T1-weighted MRI

cans, were compared with a binary meta-analysis ALE map obtained

y combining 77 Alzheimer’s disease VBM studies. Our results indicate

hat the CNN heatmaps captured brain regions that were also associated

ith AD effects on the brain in the meta-analysis. 

.1. Best deep learning-based classification model 

The best 5-fold cross-validation accuracy (87.25%) was obtained for

 ModelB with 44 channels. Overall, ModelB accuracy was stable when

he number of channels was varied, varying only between 83% and

7%. ModelA and ModelC were less stable: their accuracy ranged be-

ween 60% and 84% and 63% and 84%, respectively. ModelD produced

nly poor classifications, for an accuracy ranging between 47% and

9%. We think that these differences can be explained by overfitting,

s we noticed that ModelD usually contains more trainable parameters

han ModelC of a similar number of channels. ModelC usually contains

ore parameters than ModelA, and ModelB is the smallest model. For
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Fig. 6. Heatmaps corresponding to the best Dice overlap with the meta-analysis map, for all the CNN heatmaps methods tested in this work and the best linear SVM. 

The meta-analysis map is binary. ModelB44 achieved the best accuracy and ModelE18-20 achieved the best accuracy among tested residual networks. 
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4 channels, for instance, ModelD required the training of 1,569,058

arameters, ModelC 957,502 parameters, ModelA 705,866, and ModelB

nly 436,410 parameters. Some ModelDs were unable to fit the data,

s reported in Supplementary Materials Section 3. These observations

ould support the hypothesis that large networks cannot be trained

sing our limited sample of scans. The complete list of model sizes is

eported in this section. For ModelE, we achieved the best classification

ccuracy at 81.08% with 18 layers and 20 channels (ModelE18-20). 

The classification accuracy reached by our best model, ModelB44, is

n par with recent ADNI studies. An accuracy of 84.82% was reported

or a 3D CNN trained to classify T1-weighted hippocampus MRI scans

xtracted from ADNI ( Huang et al., 2019 ). Another study reported a

alanced accuracy between 75.5% and 88.3% for distinguishing AD and

ontrols ADNI participants using 3D CNN ( Dyrba et al., 2021 ). 
8 
.2. Explainable AI and neuroimaging 

The neuroimaging field has developed meta-analysis brain maps to

ummarize domain knowledge ( Fox et al., 2005; Vanasse et al., 2018 ),

hich we use to evaluate the CNN heatmaps. Contrary to prior studies,

here the quality of heatmaps was visually or qualitatively assessed

 Binder et al., 2016; Jo et al., 2020; Samek et al., 2016; 2021 ), we

btained precise quantitative measures by computing overlaps with a

round-truth map derived from a large-scale meta-analysis. We explored

 broad range of heatmaps’ spatial smoothing intensities, and we found

hat the heatmaps overlapped the most with the meta-analysis for Gaus-

ian smoothing kernels between 4 mm and 8 mm FWHM. These Gaussian

ernels are similar to the kernels usually applied by GingerALE when

roducing meta-analysis maps ( Eickhoff et al., 2009; GingerAle, 2022 ).
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Fig. 7. Heatmaps without smoothing, thresholded at 5% of their maximum value. ModelB44 achieved the best accuracy and ModelE18-20 achieved the best accuracy 

among tested residual networks. 
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.3. Heatmaps evaluation 

For all the CNN heatmap methods derived for ModelB44, the best

eatmaps indicated that changes in the hippocampus regions in both

emispheres were a crucial pattern during the classification of ADNI

articipants with AD and healthy controls. These results are perfectly

n line with the literature, where the effect of Alzheimer’s disease on

he hippocampus has been well-characterized ( Habes et al., 2016b; Jack

t al., 2013; Mueller et al., 2010b; Ohnishi et al., 2001; Shi et al., 2009 ).

e obtained moderately good Dice overlaps between heatmaps and the

eta-analysis ground-truth, ranging from 0.5 for the best heatmap gen-

rated by the LRP method to 0.55 for the best IG heatmaps. 

Direct analysis of the heatmaps, without spatial smoothing, estab-

ished that all CNN heatmaps were better at focusing on relevant brain

egions than linear SVM activation patterns. IG and LRP produced scat-

ered heatmaps that benefited the most from spatial smoothing, gaining

p to 0.19 and 0.18 in Dice overlap with the ground truth as the size of

he Gaussian kernels was varied. GGC Dice overlap was only improved

y 0.16 at most. In comparison, the SVM activation patterns map was

o scattered and noisy that a Dice improvement larger than 0.3 was

bserved when the map was smoothed. We refer the readers to the Sup-

lementary Materials for the complete set of Dice overlaps measured

uring this experiment ( Section 3 ). The LRP heatmap was the noisiest
9 
nd produced the least symmetric results by selecting more voxels in

he left hemisphere, as reported in prior studies ( Böhle et al., 2019 ). 

IG produced the heatmaps with the largest overlaps with the meta-

nalysis, and that overlap required less spatial smoothing. These re-

ults suggest that the IG heatmap, while being more scattered than

ther heatmaps, was overall less noisy. All heatmap methods produced

rain maps closer to the meta-analysis map than the map derived from

he baseline support vector machine and were better focused on brain

egions impacted by the disease than the SVM activation patterns.

he additional overlap measures presented in Supplementary materi-

ls ( Section 4 ) also indicate a better overlap between the IG heatmaps

nd the meta-analysis ground truth, and these results are in line with the

ynthetic results, where IG also outperformed other heatmap methods. 

The heatmaps derived for the best ResNet exhibited a very low over-

ap with the meta-analysis map. This low overlap was associated with a

ower classification performance, slightly worse than the best SVM. So,

e think that our ResNets were unable to precisely capture the brain re-

ions impacted by AD, and this failure was reflected in their heatmaps.

.4. Data augmentation 

Various techniques could be used to improve classification perfor-

ance, such as data augmentation, which is used to enhance perfor-
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ance by enlarging the training set ( Rashid et al., 2021 ). In this work,

e did not employ data augmentation as we were aiming to capture

iology-informed patterns, and the most standard form of data augmen-

ation, the inclusion of translated and rotated copies of the training scans

 Rashid et al., 2021 ), would have blurred the boundaries of the brain re-

ions that the CNN heatmaps were aiming to capture. In the future, we

ill check whether the use of more advanced data augmentation meth-

ds, such as the introduction of realistic noises that preserve the bound-

ries between grey matter and white matter in the MRI scans, could be

sed to carry out a data augmentation that retains the boundaries of the

egions of interest. 

.5. Evaluation metrics 

Multiple metrics could be used to measure the overlap between the

inary meta-analysis map provided by GingerALE, the continuous SVM

ctivation patterns, and the continuous brain maps generated by the

eatmap methods. In this work, we decided to threshold the absolute

alue of the continuous heatmaps, and we used a well-established met-

ic to measure the overlap between brain regions, the Dice overlap.

ince the meta-analysis ALE map was produced by thresholding a map

ombining Gaussian kernels of various sizes ( Eickhoff et al., 2009; Gin-

erAle, 2022 ), we considered that the thresholded heatmap had to be

moothed, and we explored a broad range of thresholds and smooth-

ngs to search for the best possible match between meta-analysis and

eatmaps. This kind of grid search is not common in the literature, but

e think that it was justified to account for the unknown level of smooth-

ng incorporated in the VBM studies and during their combination by

ingeALE. 

. Conclusion 

In this work, we evaluated the ability of three prominent CNN

eatmap methods, the Layer-wise Relevance Propagation (LRP) method,

he Integrated Gradients (IG) method, and the Guided Grad-CAM (GGC)

ethod, to capture Alzheimer’s disease effects in the ADNI data set

y training CNN classifiers and measuring the overlap between their

eatmaps and a brain map derived from a large-scale meta-analysis. We

ound that the three heatmap methods capture brain regions that over-

ap fairly well with the meta-analysis map, and we observed the best re-

ults for the IG method. All three heatmap methods outperformed linear

VM models. These results suggest that the analysis of deep nonlinear

odels by the most recent heatmap methods can produce more mean-

ngful brain maps than linear and shallow models. Further work will

e required to replicate our results and extend our models to investi-

ate other tasks, such as other neurodegenerative disorders and healthy

ging. 
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